Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Clin Virol Plus ; 3(3)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37654784

RESUMO

Background: The role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) neutralizing antibody response from natural infection and vaccination, and the potential determinants of this response are poorly understood. Characterizing this antibody response and the factors associated with neutralization can help inform future prevention efforts and improve clinical outcomes in those infected. Objectives: The goals of this study were to prospectively evaluate SARS-CoV-2 antibody levels and the neutralizing antibody responses among naturally infected adults and to determine demographic and behavioral factors independently associated with these responses. Methods: Serum was collected from seropositive individuals at baseline, four-weeks, and three-months following their first study visit to be evaluated for antibody levels. Detection of neutralizing antibodies was performed at baseline. Participant demographic and behavioral information was collected via web questionnaire prior to their first visit. Results: At baseline, higher antibody levels were associated with better neutralization capacity, with 83% of participants having detectable neutralizing antibodies. We found an age-dependent effect on antibody level and neutralization capacity with participants over 65 years having significantly higher levels. Ethnicity, heart disease, autoimmune disease, and COVID symptoms were associated with higher antibody levels, but not with increased neutralization capacity. Work environment during the pandemic correlated with increased neutralization capacity, while kidney or liver disease and traveling out of state after February 2020 correlated with decreased neutralization capacity, however neither correlated with antibody levels. Conclusions: Our data show that natural infection by SARS-CoV-2 can induce a humoral response reflected by high antibody levels and neutralization capacity.

2.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38250826

RESUMO

Cancer patients are at an increased risk of morbidity and mortality from SARS-CoV-2 infection and have a decreased immune response to vaccination. We conducted a study measuring both the neutralizing and total antibodies in cancer patients following a third dose of the mRNA-1273 COVID-19 vaccine. Immune responses were measured with an enzyme-linked immunosorbent assay (ELISA) and neutralization assays. Kruskal-Wallis tests were used to evaluate the association between patient characteristics and neutralization geometric mean titers (GMTs), and paired t-tests were used to compare the GMTs between different timepoints. Spearman correlation coefficients were calculated to determine the correlation between total antibody and neutralization GMTs. Among 238 adults diagnosed with cancer, a third dose of mRNA-1273 resulted in a 37-fold increase in neutralization GMT 28 days post-vaccination and maintained a 14.6-fold increase at 6 months. Patients with solid tumors or lymphoid cancer had the highest and lowest neutralization GMTs, respectively, at both 28 days and 6 months post-dose 3. While total antibody GMTs in lymphoid patients continued to increase, other cancer types showed decreases in titers between 28 days and 6 months post-dose 3. A strong correlation (p < 0.001) was found between total antibody and neutralization GMTs. The third dose of mRNA-1273 was able to elicit a robust neutralizing antibody response in cancer patients, which remained for 6 months after administration. Lymphoid cancer patients can benefit most from this third dose, as it was shown to continue to increase total antibody GMTs 6 months after vaccination.

3.
Vaccines (Basel) ; 10(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423026

RESUMO

We conducted a prospective study to evaluate immune responses to SARS-CoV-2 in oncology workers in which we collected blood and clinical data every 6 months. Spike-specific CD4+ T-cells and immunoglobulin G responses were measured using interferon-gamma enzyme-linked immunosorbent spot and enzyme-linked immunosorbent assay, respectively. Sixty (81%) vaccinated and 14 (19%) unvaccinated individuals were enrolled. CD4+ T-cell responses of those individuals currently naturally infected were comparable to those who were 6 months from receiving their last dose of the vaccine; both responses were significantly higher than among those who were unvaccinated. Unvaccinated participants who became vaccinated while in the study showed a significant increase in both types of spike-specific immune responses. Previously vaccinated individuals who received a third dose (booster) showed a similar response to the spike protein. However, this response decreases as soon as 3 months but does not dip below the established response following two doses. Response to variants of concern B.1.617.2 (Delta) and B.1.1.529 (Omicron) also increased, with the Omicron variant having a significantly lower response when compared to Delta and the wild type. We conclude that antibody and T-cell responses increase in oncology workers after serial vaccination but can wane over time.

4.
JAMA Oncol ; 8(5): 748-754, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35266953

RESUMO

Importance: Patients with cancer experience high rates of morbidity and mortality after SARS-CoV-2 infection. Immune response to mRNA-1273 vaccination across multiple cancer types and treatments remains to be established. Objective: To quantitate antibody responses after mRNA-1273 vaccination among patients with solid tumors and hematologic cancer and to assess clinical and treatment factors associated with vaccine response. Design, Setting, and Participants: This cohort study included patients with cancer who were aged 18 years or older, spoke English or Spanish, had received their first mRNA-1273 dose between January 12 and 25, 2021, and agreed to blood tests before and after vaccination. Exposures: Receipt of 1 and 2 mRNA-1273 SARS-CoV-2 vaccine doses. Main Outcomes and Measures: Seroconversion after each vaccine dose and IgG levels against SARS-CoV-2 spike protein obtained immediately before the first and second vaccine doses and 57 days (plus or minus 14 days) after the first vaccine dose. Cancer diagnoses and treatments were ascertained by medical record review. Serostatus was assessed via enzyme-linked immunosorbent assay. Paired t tests were applied to examine days 1, 29, and 57 SARS-CoV-2 antibody levels. Binding antibody IgG geometric mean titers were calculated based on log10-transformed values. Results: The 515 participants were a mean (SD) age of 64.5 (11.4) years; 262 (50.9%) were women; and 32 (6.2%) were Hispanic individuals and 479 (93.0%) White individuals; race and ethnicity data on 4 (0.7%) participants were missing. Seropositivity after vaccine dose 2 was 90.3% (465; 95% CI, 87.4%-92.7%) among patients with cancer, was significantly lower among patients with hematologic cancer (84.7% [255]; 95% CI, 80.1%-88.6%) vs solid tumors (98.1% [210]; 95% CI, 95.3%-99.5%), and was lowest among patients with lymphoid cancer (70.0% [77]; 95% CI, 60.5%-78.4%). Patients receiving a vaccination within 6 months after anti-CD20 monoclonal antibody treatment had a significantly lower seroconversion (6.3% [1]; 95% CI, 0.2%-30.2%) compared with those treated 6 to 24 months earlier (53.3% [8]; 95% CI, 26.6%-78.7%) or those who never received anti-CD20 treatment (94.2% [456]; 95% CI, 91.7%-96.1%). Low antibody levels after vaccination were observed among patients treated with anti-CD20 within 6 months before vaccination (GM, 15.5 AU/mL; 95% CI, 9.8-24.5 AU/mL), patients treated with small molecules (GM, 646.7 AU/mL; 95% CI, 441.9-946.5 AU/mL), and patients with low lymphocyte (GM, 547.4 AU/mL; 95% CI, 375.5-797.7 AU/mL) and IgG (GM, 494.7 AU/mL; 95% CI, 304.9-802.7 AU/mL) levels. Conclusions and Relevance: This cohort study found that the mRNA-1273 SARS-CoV-2 vaccine induced variable antibody responses that differed by cancer diagnosis and treatment received. These findings suggest that patients with hematologic cancer and those who are receiving immunosuppressive treatments may need additional vaccination doses.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Formação de Anticorpos , COVID-19 , Neoplasias , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Coortes , Feminino , Florida , Neoplasias Hematológicas , Humanos , Imunoglobulina G , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Estudos Prospectivos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
5.
Cancer Res ; 80(23): 5344-5354, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33023948

RESUMO

High-dose chemotherapy with melphalan followed by autologous transplantation is a first-line treatment for multiple myeloma. Here, we present preclinical evidence that this treatment may be significantly improved by the addition of exportin 1 inhibitors (XPO1i). The XPO1i selinexor, eltanexor, and KOS-2464 sensitized human multiple myeloma cells to melphalan. Human 8226 and U266 multiple myeloma cell lines and melphalan-resistant cell lines (8226-LR5 and U266-LR6) were highly sensitized to melphalan by XPO1i. Multiple myeloma cells from newly diagnosed and relapsed/refractory multiple myeloma patients were also sensitized by XPO1i to melphalan. In NOD/SCIDγ mice challenged with either parental 8226 or U266 multiple myeloma and melphalan-resistant multiple myeloma tumors, XPO1i/melphalan combination treatments demonstrated stronger synergistic antitumor effects than single-agent melphalan with minimal toxicity. Synergistic cell death resulted from increased XPO1i/melphalan-induced DNA damage in a dose-dependent manner and decreased DNA repair. In addition, repair of melphalan-induced DNA damage was inhibited by selinexor, which decreased melphalan-induced monoubiquitination of FANCD2 in multiple myeloma cells. Knockdown of FANCD2 was found to replicate the effect of selinexor when used with melphalan, increasing DNA damage (γH2AX) by inhibiting DNA repair. Thus, combination therapies that include selinexor or eltanexor with melphalan may have the potential to improve treatment outcomes of multiple myeloma in melphalan-resistant and newly diagnosed patients. The combination of selinexor and melphalan is currently being investigated in the context of high-dose chemotherapy and autologous transplant (NCT02780609). SIGNIFICANCE: Inhibition of exportin 1 with selinexor synergistically sensitizes human multiple myeloma to melphalan by inhibiting Fanconi anemia pathway-mediated DNA repair.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carioferinas/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Dano ao DNA , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Hidrazinas/administração & dosagem , Hidrazinas/farmacologia , Carioferinas/metabolismo , Melfalan/administração & dosagem , Camundongos Endogâmicos NOD , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Nestina/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Triazóis/administração & dosagem , Triazóis/farmacologia , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Cancer Res ; 26(1): 54-60, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636097

RESUMO

PURPOSE: Induction chemotherapy results in complete remission (CR) rates of 20% to 50% among patients with poor-risk AML. Selinexor is an oral selective inhibitor of nuclear export with promising single-agent activity. By inhibiting the primary export protein, XPO1, selinexor localizes and activates tumor suppressor proteins in the nucleus and inhibits DNA damage repair, rationalizing combination with DNA-damaging agents. PATIENTS AND METHODS: This was a single-arm phase I clinical trial of selinexor combined with cytarabine and daunorubicin (7+3). Dose escalation was selinexor alone (3+3) with an expansion at the MTD. Cohorts 1 and 2 received 60 and 80 mg orally, respectively, twice weekly during induction. Consolidation cycles (≤ 2) with selinexor at induction dose plus 5+2 were allowed for patients who achieved CR. MTD and recommended phase II dose of selinexor were the primary endpoints. RESULTS: Twenty-one patients with poor-risk AML were enrolled. All 21 patients were included in the safety evaluations and survival analyses (4 in each of 2 cohorts; 13 in the expansion); 8 (53%) of the 19 patients evaluable for response achieved CR/CRi. MTD was not reached. Selinexor 80 mg (orally, twice weekly) was used in the expansion phase. The most common grade 3/4 nonhematologic treatment-emergent adverse events were febrile neutropenia (67%), diarrhea (29%), hyponatremia (29%), and sepsis (14%). At median follow-up (28.9 months), 38% of patients were alive. Median overall survival was 10.3 months. CONCLUSIONS: Selinexor plus 7+3 is a safe regimen for patients with newly diagnosed poor-risk AML and warrants further investigation in a larger clinical trial.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Adulto , Idoso , Citarabina/administração & dosagem , Daunorrubicina/administração & dosagem , Feminino , Humanos , Hidrazinas/administração & dosagem , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Segurança do Paciente , Taxa de Sobrevida , Distribuição Tecidual , Resultado do Tratamento , Triazóis/administração & dosagem
7.
PLoS One ; 14(9): e0222228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31550266

RESUMO

Ewing Sarcoma (ES) is characterized by recurrent translocations between EWSR1 and members of the ETS family of transcription factors. The transcriptional activity of the fusion oncoprotein is dependent on interaction with the nucleosome remodeling and deactylase (NuRD) co-repressor complex. While inhibitors of both histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1) subunits of the NuRD complex demonstrate single agent activity in preclinical models, combination strategies have not been investigated. We selected 7 clinically utilized chemotherapy agents, or active metabolites thereof, for experimentation: doxorubicin, cyclophosphamide, vincristine, etoposide and irinotecan as well as the HDAC inhibitor romidepsin and the reversible LSD1 inhibitor SP2509. All agents were tested at clinically achievable concentrations in 4 ES cell lines. All possible 2 drug combinations were then tested for potential synergy. Order of addition of second-line conventional combination therapy agents was tested with the addition of SP2509. In two drug experiments, synergy was observed with several combinations, including when SP2509 was paired with topoisomerase inhibitors or romidepsin. Addition of SP2509 after treatment with second-line combination therapy agents enhanced treatment effect. Our findings suggest promising combination treatment strategies that utilize epigenetic agents in ES.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/enzimologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desmetilases/antagonistas & inibidores , Sarcoma de Ewing/enzimologia , Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Ciclofosfamida/uso terapêutico , Depsipeptídeos/administração & dosagem , Depsipeptídeos/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Etoposídeo/administração & dosagem , Etoposídeo/uso terapêutico , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Hidrazinas/administração & dosagem , Hidrazinas/uso terapêutico , Irinotecano/administração & dosagem , Irinotecano/uso terapêutico , Sarcoma de Ewing/tratamento farmacológico , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Vincristina/administração & dosagem , Vincristina/uso terapêutico
8.
Oncotarget ; 9(32): 22571-22585, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29854299

RESUMO

Malignant peripheral nerve sheath tumor (MPNST) is a type of soft-tissue sarcoma strongly associated with dysfunction in neurofibromin; an inhibitor of the RAS pathway. We performed high-throughput screening of an array of FDA approved and promising agents in clinical development both alone and in combination at physiologically achievable concentrations against a panel of established MPNST cell line models. We found that drugs targeting a variety of factors in the RAS pathway can effectively lead to cell death in vitro with considerable drug combination synergy in regimens that target MEK or mTOR. We observed that the degree of relative sensitivity to chemotherapeutic agents was associated with the status of neurofibromin in these cell line models. Using a combination of agents that target MEK and mTORC1/2, we effectively silenced RAS/PI3K/MEK/mTOR signaling in vitro. Moreover, we employed RNAi against NF1 to establish that MPNST drug sensitivity is directly proportional to relative level of intracellular neurofibromin. Thus, two-drug combinations that target MEK and mTORC1/2 are most effective in halting the RAS signaling cascade, and the relative success of this and related small molecule interventions in MPNSTs may be predicated upon the molecular status of neurofibromin.

9.
Sci Transl Med ; 9(372)2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077684

RESUMO

Graft-versus-host disease (GVHD) is a leading cause of nonrelapse mortality after allogeneic hematopoietic cell transplantation. T cell costimulation by CD28 contributes to GVHD, but prevention is incomplete when targeting CD28, downstream mammalian target of rapamycin (mTOR), or Aurora A. Likewise, interleukin-6 (IL-6)-mediated Janus kinase 2 (JAK2) signaling promotes alloreactivity, yet JAK2 inhibition does not eliminate GVHD. We provide evidence that blocking Aurora A and JAK2 in human T cells is synergistic in vitro, prevents xenogeneic GVHD, and maintains antitumor responses by cytotoxic T lymphocytes (CTLs). Aurora A/JAK2 inhibition is immunosuppressive but permits the differentiation of inducible regulatory T cells (iTregs) that are hyperfunctional and CD39 bright and efficiently scavenge adenosine triphosphate (ATP). Increased iTreg potency is primarily a function of Aurora A blockade, whereas JAK2 inhibition suppresses T helper 17 (TH17) differentiation. Inhibiting either Aurora A or JAK2 significantly suppresses TH1 T cells. However, CTL generated in vivo retains tumor-specific killing despite Aurora A/JAK2 blockade. Thus, inhibiting CD28 and IL-6 signal transduction pathways in donor T cells can increase the Treg/Tconv ratio, prevent GVHD, and preserve antitumor CTL.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Doença Enxerto-Hospedeiro/prevenção & controle , Janus Quinase 2/antagonistas & inibidores , Leucemia/terapia , Linfócitos T Citotóxicos/citologia , Linfócitos T Reguladores/citologia , Animais , Antineoplásicos/farmacologia , Aurora Quinase A/metabolismo , Azepinas/farmacologia , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Feminino , Humanos , Imunossupressores/farmacologia , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Teste de Cultura Mista de Linfócitos , Masculino , Camundongos , Recidiva Local de Neoplasia/prevenção & controle , Transplante de Neoplasias , Pirimidinas/farmacologia , Pirrolidinas/farmacologia , Transdução de Sinais , Sulfonamidas/farmacologia , Células Th17/citologia
10.
Cancer Chemother Pharmacol ; 78(2): 313-23, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27324022

RESUMO

PURPOSE: Systemic therapy has improved rhabdomyosarcoma event-free and overall survival; however, approximately 40 % of patients will have progressive or recurrent disease which is difficult to cure and remains a considerable challenge. Minimal progress has been made in improving outcomes for metastatic or relapsed RMS due to a lack of effective therapeutic agents. Targeted therapies are likely to be incorporated into regimens which rely on conventional cytotoxic chemotherapy. A system to evaluate novel combinations of interest is needed. METHODS: In this study, we explored 8 agents, 5 that are routinely used or similar to agents used in the clinical management of RMS and 3 biologically targeted agents with novel mechanisms of action, the Wee1 inhibitor AZD1775, the tyrosine kinase inhibitor cabozantinib, and the proteasome inhibitor bortezomib. All were tested individually at clinically achievable concentrations for activity in 4 RMS cell lines and then for potential synergy in two-drug combinations. RESULTS: We found single-agent activity in five of the agents (or their active metabolites) that constitute the standard of care in RMS and for AZD1775 with mean IC50 values of 207 ng/ml, well below clinically achievable levels. In addition, the combination of individual cytotoxic chemotherapeutics currently used for RMS demonstrated largely synergistic activity with higher, but clinically achievable concentrations of AZD1775 in our assays. CONCLUSIONS: Prioritization of chemotherapeutics in RMS is possible using an in vitro system that can define novel drug combinations worthy of future investigation. AZD1775 exhibits single-agent activity, as well as synergy with conventional cytotoxic chemotherapy, and is a novel targeted agent that warrants further study in RMS.


Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular/métodos , Rabdomiossarcoma/tratamento farmacológico , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Criança , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Rabdomiossarcoma/patologia
11.
Mol Clin Oncol ; 4(3): 399-404, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998291

RESUMO

Experimental and epidemiological data support the potential activity of acetaminophen against ovarian cancer (OVCA). In this study, we sought to confirm the activity of acetaminophen in OVCA cell lines and to investigate the molecular basis of response. A total of 16 OVCA cell lines underwent pretreatment (baseline) genome-wide expression measurements and were then treated with and analyzed for acetaminophen sensitivity. Pearson's correlation analysis was performed to identify genes that were associated with OVCA acetaminophen response. The identified genes were subjected to pathway analysis, and the expression of each represented pathway was summarized using principal component analysis. OVCA acetaminophen response pathways were analyzed in 4 external clinico-genomic datasets from 820 women for associations with overall survival from OVCA. Acetaminophen exhibited antiproliferative activity against all tested OVCA cell lines, with half maximal inhibitory concentration values ranging from 63.2 to 403 µM. Pearson's correlation followed by biological pathway analysis identified 13 pathways to be associated with acetaminophen sensitivity (P<0.01). Associations were observed between patient survival from OVCA and expression of the following pathways: Development/angiotensin signaling via ß-arrestin (P=0.04), protein folding and maturation/angiotensin system maturation (P=0.02), signal transduction/c-Jun N-terminal kinase (JNK) pathway (P=0.03) and androstenedione and testosterone biosynthesis and metabolism (P=0.02). We confirmed that acetaminophen was active against OVCA cells in vitro. Furthermore, we identified 4 molecular signaling pathways associated with acetaminophen response that may also affect overall survival in women with OVCA, including the JNK pathway, which has been previously implicated in the mechanism of action of acetaminophen and is predictive of decreased survival in women with OVCA.

12.
Sci Rep ; 5: 16991, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26601688

RESUMO

Systemic therapy has improved osteosarcoma event-free and overall survival, but 30-50% of patients originally diagnosed will have progressive or recurrent disease, which is difficult to cure. Osteosarcoma has a complex karyotype, with loss of p53 in the vast majority of cases and an absence of recurrent, targetable pathways. In this study, we explored 54 agents that are clinically approved for other oncologic indications, agents in active clinical development, and others with promising preclinical data in osteosarcoma at clinically achievable concentrations in 5 osteosarcoma cell lines. We found significant single-agent activity of multiple agents and tested 10 drugs in all permutations of two-drug combinations to define synergistic combinations by Chou and Talalay analysis. We then evaluated order of addition to choose the combinations that may be best to translate to the clinic. We conclude that the repurposing of chemotherapeutics in osteosarcoma by using an in vitro system may define novel drug combinations with significant in vivo activity. In particular, combinations of proteasome inhibitors with histone deacetylase inhibitors and ixabepilone and MK1775 demonstrated excellent activity in our assays.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Osteossarcoma/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Epotilonas/uso terapêutico , Epotilonas/toxicidade , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Osteossarcoma/patologia , Inibidores de Proteassoma/farmacologia , Pirazóis/uso terapêutico , Pirazóis/toxicidade , Pirimidinas/uso terapêutico , Pirimidinas/toxicidade , Pirimidinonas , Transplante Heterólogo , Células Tumorais Cultivadas
13.
J Clin Invest ; 124(6): 2585-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24812669

RESUMO

Activation of the ER stress response is associated with malignant progression of B cell chronic lymphocytic leukemia (CLL). We developed a murine CLL model that lacks the ER stress-associated transcription factor XBP-1 in B cells and found that XBP-1 deficiency decelerates malignant progression of CLL-associated disease. XBP-1 deficiency resulted in acquisition of phenotypes that are disadvantageous for leukemic cell survival, including compromised BCR signaling capability and increased surface expression of sphingosine-1-phosphate receptor 1 (S1P1). Because XBP-1 expression requires the RNase activity of the ER transmembrane receptor IRE-1, we developed a potent IRE-1 RNase inhibitor through chemical synthesis and modified the structure to facilitate entry into cells to target the IRE-1/XBP-1 pathway. Treatment of CLL cells with this inhibitor (B-I09) mimicked XBP-1 deficiency, including upregulation of IRE-1 expression and compromised BCR signaling. Moreover, B-I09 treatment did not affect the transport of secretory and integral membrane-bound proteins. Administration of B-I09 to CLL tumor-bearing mice suppressed leukemic progression by inducing apoptosis and did not cause systemic toxicity. Additionally, B-I09 and ibrutinib, an FDA-approved BTK inhibitor, synergized to induce apoptosis in B cell leukemia, lymphoma, and multiple myeloma. These data indicate that targeting XBP-1 has potential as a treatment strategy, not only for multiple myeloma, but also for mature B cell leukemia and lymphoma.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Adenina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inibidores Enzimáticos/química , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Knockout , Piperidinas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
14.
Semin Cancer Biol ; 27: 62-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24631834

RESUMO

Nuclear-cytoplasmic trafficking of proteins is a significant factor in the development of cancer and drug resistance. Subcellular localization of exported proteins linked to cancer development include those involved in cell growth and proliferation, apoptosis, cell cycle regulation, transformation, angiogenesis, cell adhesion, invasion, and metastasis. Here, we examined the basic mechanisms involved in the export of proteins from the nucleus to the cytoplasm. All proteins over 40kDa use the nuclear pore complex to gain entry or exit from the nucleus, with the primary nuclear export molecule involved in these processes being chromosome region maintenance 1 (CRM1, exportin 1 or XPO1). Proteins exported from the nucleus must possess a hydrophobic nuclear export signal (NES) peptide that binds to a hydrophobic groove containing an active-site Cys528 in the CRM1 protein. CRM1 inhibitors function largely by covalent modification of the active site Cys528 and prevent binding to the cargo protein NES. In the absence of a CRM1 inhibitor, CRM1 binds cooperatively to the NES of the cargo protein and RanGTP, forming a trimer that is actively transported out of the nucleus by facilitated diffusion. Nuclear export can be blocked by CRM1 inhibitors, NES peptide inhibitors or by preventing post-translational modification of cargo proteins. Clinical trials using the classic CRM1 inhibitor leptomycin B proved too toxic for patients; however, a new generation of less toxic small molecule inhibitors is being used in clinical trials in patients with both hematological malignancies and solid tumors. Additional trials are being initiated using small-molecule CRM1 inhibitors in combination with chemotherapeutics such as pegylated liposomal doxorubicin. In this review, we present evidence that combining the new CRM1 inhibitors with other classes of therapeutics may prove effective in the treatment of cancer. Potential combinatorial therapies discussed include the use of CRM1 inhibitors and the addition of alkylating agents (melphalan), anthracyclines (doxorubicin and daunomycin), BRAF inhibitors, platinum drugs (cisplatin and oxaliplatin), proteosome inhibitors (bortezomib and carfilzomib), or tyrosine-kinase inhibitors (imatinib). Also, the sequence of treatment may be important for combination therapy. We found that the most effective treatment regimen involved first priming the cancer cells with the CRM1 inhibitor followed by doxorubicin, bortezomib, carfilzomib, or melphalan. This order sensitized both de novo and acquired drug-resistant cancer cell lines.


Assuntos
Transporte Ativo do Núcleo Celular , Carioferinas/metabolismo , Neoplasias/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Carioferinas/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Sarcoma ; 2013: 365723, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282374

RESUMO

For patients with sarcoma, metastatic disease remains very difficult to cure, and outcomes remain less than optimal. Treatment options have not largely changed, although some promising gains have been made with single agents in specific subtypes with the use of targeted agents. Here, we developed a system to investigate synergy of combinations of targeted and cytotoxic agents in a panel of sarcoma cell lines. Agents were investigated alone and in combination with varying dose ratios. Dose-response curves were analyzed for synergy using methods derived from Chou and Talalay (1984). A promising combination, dasatinib and triciribine, was explored in a murine model using the A673 cell line, and tumors were evaluated by MRI and histology for therapy effect. We found that histone deacetylase inhibitors were synergistic with etoposide, dasatinib, and Akt inhibitors across cell lines. Sorafenib and topotecan demonstrated a mixed response. Our systematic drug screening method allowed us to screen a large number of combinations of sarcoma agents. This method can be easily modified to accommodate other cell line models, and confirmatory assays, such as animal experiments, can provide excellent preclinical data to inform clinical trials for these rare malignancies.

16.
J Cancer ; 4(8): 614-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155773

RESUMO

Multiple myeloma (MM) remains an incurable disease despite improved treatments, including lenalidomide/pomalidomide and bortezomib/carfilzomib based therapies and high-dose chemotherapy with autologous stem cell rescue. New drug targets are needed to further improve treatment outcomes. Nuclear export of macromolecules is misregulated in many cancers, including in hematological malignancies such as MM. CRM1 (chromosome maintenance protein-1) is a ubiquitous protein that exports large proteins (>40 kDa) from the nucleus to the cytoplasm. We found that small-molecule Selective Inhibitors of Nuclear Export (SINE) prevent CRM1-mediated export of p53 and topoisomerase IIα (topo IIα). SINE's CRM1-inhibiting activity was verified by nuclear-cytoplasmic fractionation and immunocytochemical staining of the CRM1 cargoes p53 and topo IIα in MM cells. We found that SINE molecules reduced cell viability and induced apoptosis when used as both single agents in the sub-micromolar range and when combined with doxorubicin, bortezomib, or carfilzomib but not lenalidomide, melphalan, or dexamethasone. In addition, CRM1 inhibition sensitized MM cell lines and patient myeloma cells to doxorubicin, bortezomib, and carfilzomib but did not affect peripheral blood mononuclear or non-myeloma bone marrow mononuclear cells as shown by cell viability and apoptosis assay. Drug resistance induced by co-culture of myeloma cells with bone marrow stroma cells was circumvented by the addition of SINE molecules. These results support the continued development of SINE for patients with MM.

17.
Cancer Biol Ther ; 14(10): 932-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23917345

RESUMO

BACKGROUND: Several molecularly-targeted agents are being evaluated in gastric cancer cell lines. In this study we evaluated the synergistic potential of MK-2206, an oral potent allosteric Akt inhibitor, in combination with chemotherapeutic agents in human gastric cancer cell lines. MATERIALS AND METHODS: We evaluated effects of MK-2206 on cell growth and cell signaling using a panel of gastric cancer cell lines AGS, SNU-1 and SNU 16. The analysis of drug combinations was conducted by using CellTiter-Blue™ Cell Viability Assay which yielded the combination index (CI). MK-2206 and representative chemotherapy agent were further evaluated regarding their effects on Akt inhibition and downstream targets using western blots probed with the appropriate antibodies. We assessed the combination of MK-2206 and chemotherapy in three different treatment sequences. RESULTS: We demonstrated in vitro synergistic efficacy of MK-2206 when combined with carboplatinum and paclitaxel in the three cell lines examined. Efficacy was dose dependent. We assessed the combination of MK-2206 and carboplatinum/paclitaxel in three different treatment sequences; 24 h of exposure to combination chemotherapy followed by a 48 h exposure to MK-2206 resulted in the highest synergistic antiproliferative effect in all cell lines. On the other hand, the reverse sequence (MK-2206 followed by chemotherapy) and the concurrent treatment schedule were slightly synergistic or additive as well. The effects of MK-2206 on p-Akt and other downstream targets was reported. CONCLUSIONS: Our findings suggest that Akt inhibition augments the efficacy of existing gastric cancer therapeutics (carboplatinum and paclitaxel); thus, MK-2206 is a promising agent to treat gastric cancer patients who receive these cytotoxic agents. The magnitude of synergy depended on the treatment sequence; a schedule of MK-2206 dosed before or concurrently with chemotherapy was not as effective as being dosed after chemotherapy. Further experiments addressing MK-2206's mechanism of action in combination with chemotherapy are needed.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas
18.
J Med Chem ; 56(10): 3768-82, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23600925

RESUMO

Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases that act as key regulatory elements in cell cycle progression. We describe the development of highly potent diaminothiazole inhibitors of CDK2 (IC50 = 0.0009-0.0015 µM) from a single hit compound with weak inhibitory activity (IC50 = 15 µM), discovered by high-throughput screening. Structure-based design was performed using 35 cocrystal structures of CDK2 liganded with distinct analogues of the parent compound. The profiling of compound 51 against a panel of 339 kinases revealed high selectivity for CDKs, with preference for CDK2 and CDK5 over CDK9, CDK1, CDK4, and CDK6. Compound 51 inhibited the proliferation of 13 out of 15 cancer cell lines with IC50 values between 0.27 and 6.9 µM, which correlated with the complete suppression of retinoblastoma phosphorylation and the onset of apoptosis. Combined, the results demonstrate the potential of this new inhibitors series for further development into CDK-specific chemical probes or therapeutics.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Tiazóis/síntese química , Tiazóis/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corantes , Simulação por Computador , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Ensaios de Triagem em Larga Escala , Humanos , Indicadores e Reagentes , Masculino , Modelos Moleculares , Fosforilação , Relação Estrutura-Atividade , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/patologia , Sais de Tetrazólio
19.
Oncol Rep ; 29(5): 2011-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23467907

RESUMO

Elevated serum levels of hepatocyte growth factor (HGF) and high tumor expression of c-Met are both indicators of poor overall survival from ovarian cancer (OVCA). In the present study, we evaluated the role of the HGF signaling pathway in OVCA cell line chemoresistance and OVCA patient overall survival as well as the influence of HGF/c-Met signaling inhibition on the sensitivity of OVCA cells to combinational carboplatin plus paclitaxel therapy. The prevalence of the HGF receptor, c-Met, was determined by immunohistochemistry in primary OVCA samples (n=79) and OVCA cell lines (n=41). The influence of the c-Met-specific inhibitor MK8033 on OVCA cell sensitivity to combinations of carboplatin plus paclitaxel was examined in a subset of OVCA cells (n=8) by CellTiter-Blue cell viability assays. Correlation tests were used to identify genes associated with response to MK8033 and carboplatin plus paclitaxel. Identified genes were evaluated for influence on overall survival from OVCA using principal component analysis (PCA) modeling in an independent clinical OVCA dataset (n=218). Immunohistochemistry analysis indicated that 83% of OVCA cells and 92% of primary OVCA expressed the HGF receptor, c-Met. MK8033 exhibited significant anti-proliferative effects against a panel of human OVCA cell lines. Combination index values determined by the Chou-Talalay isobologram equation indicated synergistic activity in combinations of MK8033 and carboplatin plus paclitaxel. Pearson's correlation identified a 47-gene signature to be associated with MK8033-carboplatin plus paclitaxel response. PCA modeling indicated an association of this 47-gene response signature with overall survival from OVCA (P=0.013). These data indicate that HGF/c-Met pathway signaling may influence OVCA chemosensitivity and overall patient survival. Furthermore, HGF/c-Met inhibition by MK8033 represents a promising new therapeutic avenue to increase OVCA sensitivity to carboplatin plus paclitaxel.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzocicloeptenos/farmacologia , Carboplatina/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Sulfonamidas/farmacologia , Benzocicloeptenos/administração & dosagem , Carboplatina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sinergismo Farmacológico , Feminino , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/administração & dosagem , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/administração & dosagem
20.
Int J Oncol ; 41(1): 179-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22552627

RESUMO

Ovarian cancer (OVCA) is the most lethal gynecological malignancy. The high mortality rate associated with this disease is due in large part to the development of resistance to chemotherapy; however, the biological basis of this remains unclear. Gemcitabine is frequently used for the treatment of patients with platinum-resistant OVCA. We report molecular signaling pathways associated with OVCA response to gemcitabine. Forty-one OVCA cell lines were subjected to gene expression analysis; in parallel, IC50 values for gemcitabine were quantified using CellTiter-Blue viability assays. Pearson's correlation coefficients were calculated for gene expression and gemcitabine IC50 values. The genes associated with gemcitabine sensitivity were subjected to pathway analysis. For the identified pathways, principal component analysis was used to derive pathway signatures and corresponding scores, which represent overall measures of pathway expression. Expression levels of the identified pathways were then evaluated in a series of clinico-genomic datasets from 142 patients with stage III/IV serous OVCA. We found that in vitro gemcitabine sensitivity was associated with expression of 131 genes (p<0.001). These genes include significant representation of three molecular signaling pathways (p<0.02): O-glycan biosynthesis, Role of Nek in cell cycle regulation and Antiviral actions of Interferons. In an external clinico-genomic OVCA dataset (n=142), expression of the O-glycan pathway was associated with overall survival, independent of surgical cytoreductive status, grade and age (p<0.001). Expression levels of Role of Nek in cell cycle regulation and Antiviral actions of Interferons were not associated with survival (p=0.31 and p=0.54, respectively). Collectively, expression of the O-glycan biosynthesis pathway, which modifies protein function via post-translational carbohydrate binding, is independently associated with overall survival from OVCA. Our findings shed light on the molecular basis of OVCA responsiveness to gemcitabine and also identify a signaling pathway that may influence patient survival.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Neoplasias Ovarianas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Vias Biossintéticas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Glicosilação , Humanos , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Polissacarídeos/biossíntese , Análise de Componente Principal , Transdução de Sinais , Transcrição Gênica , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...